(0) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
lte(Cons(x', xs'), Cons(x, xs)) → lte(xs', xs)
lte(Cons(x, xs), Nil) → False
even(Cons(x, Nil)) → False
even(Cons(x', Cons(x, xs))) → even(xs)
notEmpty(Cons(x, xs)) → True
notEmpty(Nil) → False
lte(Nil, y) → True
even(Nil) → True
goal(x, y) → and(lte(x, y), even(x))
The (relative) TRS S consists of the following rules:
and(False, False) → False
and(True, False) → False
and(False, True) → False
and(True, True) → True
Rewrite Strategy: INNERMOST
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
lte(Cons(x', xs'), Cons(x, xs)) → lte(xs', xs)
lte(Cons(x, xs), Nil) → False
even(Cons(x, Nil)) → False
even(Cons(x', Cons(x, xs))) → even(xs)
notEmpty(Cons(x, xs)) → True
notEmpty(Nil) → False
lte(Nil, y) → True
even(Nil) → True
goal(x, y) → and(lte(x, y), even(x))
The (relative) TRS S consists of the following rules:
and(False, False) → False
and(True, False) → False
and(False, True) → False
and(True, True) → True
Rewrite Strategy: INNERMOST
(3) SlicingProof (LOWER BOUND(ID) transformation)
Sliced the following arguments:
Cons/0
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
lte(Cons(xs'), Cons(xs)) → lte(xs', xs)
lte(Cons(xs), Nil) → False
even(Cons(Nil)) → False
even(Cons(Cons(xs))) → even(xs)
notEmpty(Cons(xs)) → True
notEmpty(Nil) → False
lte(Nil, y) → True
even(Nil) → True
goal(x, y) → and(lte(x, y), even(x))
The (relative) TRS S consists of the following rules:
and(False, False) → False
and(True, False) → False
and(False, True) → False
and(True, True) → True
Rewrite Strategy: INNERMOST
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
Innermost TRS:
Rules:
lte(Cons(xs'), Cons(xs)) → lte(xs', xs)
lte(Cons(xs), Nil) → False
even(Cons(Nil)) → False
even(Cons(Cons(xs))) → even(xs)
notEmpty(Cons(xs)) → True
notEmpty(Nil) → False
lte(Nil, y) → True
even(Nil) → True
goal(x, y) → and(lte(x, y), even(x))
and(False, False) → False
and(True, False) → False
and(False, True) → False
and(True, True) → True
Types:
lte :: Cons:Nil → Cons:Nil → False:True
Cons :: Cons:Nil → Cons:Nil
Nil :: Cons:Nil
False :: False:True
even :: Cons:Nil → False:True
notEmpty :: Cons:Nil → False:True
True :: False:True
goal :: Cons:Nil → Cons:Nil → False:True
and :: False:True → False:True → False:True
hole_False:True1_0 :: False:True
hole_Cons:Nil2_0 :: Cons:Nil
gen_Cons:Nil3_0 :: Nat → Cons:Nil
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
lte, even
(8) Obligation:
Innermost TRS:
Rules:
lte(
Cons(
xs'),
Cons(
xs)) →
lte(
xs',
xs)
lte(
Cons(
xs),
Nil) →
Falseeven(
Cons(
Nil)) →
Falseeven(
Cons(
Cons(
xs))) →
even(
xs)
notEmpty(
Cons(
xs)) →
TruenotEmpty(
Nil) →
Falselte(
Nil,
y) →
Trueeven(
Nil) →
Truegoal(
x,
y) →
and(
lte(
x,
y),
even(
x))
and(
False,
False) →
Falseand(
True,
False) →
Falseand(
False,
True) →
Falseand(
True,
True) →
TrueTypes:
lte :: Cons:Nil → Cons:Nil → False:True
Cons :: Cons:Nil → Cons:Nil
Nil :: Cons:Nil
False :: False:True
even :: Cons:Nil → False:True
notEmpty :: Cons:Nil → False:True
True :: False:True
goal :: Cons:Nil → Cons:Nil → False:True
and :: False:True → False:True → False:True
hole_False:True1_0 :: False:True
hole_Cons:Nil2_0 :: Cons:Nil
gen_Cons:Nil3_0 :: Nat → Cons:Nil
Generator Equations:
gen_Cons:Nil3_0(0) ⇔ Nil
gen_Cons:Nil3_0(+(x, 1)) ⇔ Cons(gen_Cons:Nil3_0(x))
The following defined symbols remain to be analysed:
lte, even
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
lte(
gen_Cons:Nil3_0(
+(
1,
n5_0)),
gen_Cons:Nil3_0(
n5_0)) →
False, rt ∈ Ω(1 + n5
0)
Induction Base:
lte(gen_Cons:Nil3_0(+(1, 0)), gen_Cons:Nil3_0(0)) →RΩ(1)
False
Induction Step:
lte(gen_Cons:Nil3_0(+(1, +(n5_0, 1))), gen_Cons:Nil3_0(+(n5_0, 1))) →RΩ(1)
lte(gen_Cons:Nil3_0(+(1, n5_0)), gen_Cons:Nil3_0(n5_0)) →IH
False
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
Innermost TRS:
Rules:
lte(
Cons(
xs'),
Cons(
xs)) →
lte(
xs',
xs)
lte(
Cons(
xs),
Nil) →
Falseeven(
Cons(
Nil)) →
Falseeven(
Cons(
Cons(
xs))) →
even(
xs)
notEmpty(
Cons(
xs)) →
TruenotEmpty(
Nil) →
Falselte(
Nil,
y) →
Trueeven(
Nil) →
Truegoal(
x,
y) →
and(
lte(
x,
y),
even(
x))
and(
False,
False) →
Falseand(
True,
False) →
Falseand(
False,
True) →
Falseand(
True,
True) →
TrueTypes:
lte :: Cons:Nil → Cons:Nil → False:True
Cons :: Cons:Nil → Cons:Nil
Nil :: Cons:Nil
False :: False:True
even :: Cons:Nil → False:True
notEmpty :: Cons:Nil → False:True
True :: False:True
goal :: Cons:Nil → Cons:Nil → False:True
and :: False:True → False:True → False:True
hole_False:True1_0 :: False:True
hole_Cons:Nil2_0 :: Cons:Nil
gen_Cons:Nil3_0 :: Nat → Cons:Nil
Lemmas:
lte(gen_Cons:Nil3_0(+(1, n5_0)), gen_Cons:Nil3_0(n5_0)) → False, rt ∈ Ω(1 + n50)
Generator Equations:
gen_Cons:Nil3_0(0) ⇔ Nil
gen_Cons:Nil3_0(+(x, 1)) ⇔ Cons(gen_Cons:Nil3_0(x))
The following defined symbols remain to be analysed:
even
(12) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
even(
gen_Cons:Nil3_0(
+(
1,
*(
2,
n258_0)))) →
False, rt ∈ Ω(1 + n258
0)
Induction Base:
even(gen_Cons:Nil3_0(+(1, *(2, 0)))) →RΩ(1)
False
Induction Step:
even(gen_Cons:Nil3_0(+(1, *(2, +(n258_0, 1))))) →RΩ(1)
even(gen_Cons:Nil3_0(+(1, *(2, n258_0)))) →IH
False
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(13) Complex Obligation (BEST)
(14) Obligation:
Innermost TRS:
Rules:
lte(
Cons(
xs'),
Cons(
xs)) →
lte(
xs',
xs)
lte(
Cons(
xs),
Nil) →
Falseeven(
Cons(
Nil)) →
Falseeven(
Cons(
Cons(
xs))) →
even(
xs)
notEmpty(
Cons(
xs)) →
TruenotEmpty(
Nil) →
Falselte(
Nil,
y) →
Trueeven(
Nil) →
Truegoal(
x,
y) →
and(
lte(
x,
y),
even(
x))
and(
False,
False) →
Falseand(
True,
False) →
Falseand(
False,
True) →
Falseand(
True,
True) →
TrueTypes:
lte :: Cons:Nil → Cons:Nil → False:True
Cons :: Cons:Nil → Cons:Nil
Nil :: Cons:Nil
False :: False:True
even :: Cons:Nil → False:True
notEmpty :: Cons:Nil → False:True
True :: False:True
goal :: Cons:Nil → Cons:Nil → False:True
and :: False:True → False:True → False:True
hole_False:True1_0 :: False:True
hole_Cons:Nil2_0 :: Cons:Nil
gen_Cons:Nil3_0 :: Nat → Cons:Nil
Lemmas:
lte(gen_Cons:Nil3_0(+(1, n5_0)), gen_Cons:Nil3_0(n5_0)) → False, rt ∈ Ω(1 + n50)
even(gen_Cons:Nil3_0(+(1, *(2, n258_0)))) → False, rt ∈ Ω(1 + n2580)
Generator Equations:
gen_Cons:Nil3_0(0) ⇔ Nil
gen_Cons:Nil3_0(+(x, 1)) ⇔ Cons(gen_Cons:Nil3_0(x))
No more defined symbols left to analyse.
(15) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
lte(gen_Cons:Nil3_0(+(1, n5_0)), gen_Cons:Nil3_0(n5_0)) → False, rt ∈ Ω(1 + n50)
(16) BOUNDS(n^1, INF)
(17) Obligation:
Innermost TRS:
Rules:
lte(
Cons(
xs'),
Cons(
xs)) →
lte(
xs',
xs)
lte(
Cons(
xs),
Nil) →
Falseeven(
Cons(
Nil)) →
Falseeven(
Cons(
Cons(
xs))) →
even(
xs)
notEmpty(
Cons(
xs)) →
TruenotEmpty(
Nil) →
Falselte(
Nil,
y) →
Trueeven(
Nil) →
Truegoal(
x,
y) →
and(
lte(
x,
y),
even(
x))
and(
False,
False) →
Falseand(
True,
False) →
Falseand(
False,
True) →
Falseand(
True,
True) →
TrueTypes:
lte :: Cons:Nil → Cons:Nil → False:True
Cons :: Cons:Nil → Cons:Nil
Nil :: Cons:Nil
False :: False:True
even :: Cons:Nil → False:True
notEmpty :: Cons:Nil → False:True
True :: False:True
goal :: Cons:Nil → Cons:Nil → False:True
and :: False:True → False:True → False:True
hole_False:True1_0 :: False:True
hole_Cons:Nil2_0 :: Cons:Nil
gen_Cons:Nil3_0 :: Nat → Cons:Nil
Lemmas:
lte(gen_Cons:Nil3_0(+(1, n5_0)), gen_Cons:Nil3_0(n5_0)) → False, rt ∈ Ω(1 + n50)
even(gen_Cons:Nil3_0(+(1, *(2, n258_0)))) → False, rt ∈ Ω(1 + n2580)
Generator Equations:
gen_Cons:Nil3_0(0) ⇔ Nil
gen_Cons:Nil3_0(+(x, 1)) ⇔ Cons(gen_Cons:Nil3_0(x))
No more defined symbols left to analyse.
(18) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
lte(gen_Cons:Nil3_0(+(1, n5_0)), gen_Cons:Nil3_0(n5_0)) → False, rt ∈ Ω(1 + n50)
(19) BOUNDS(n^1, INF)
(20) Obligation:
Innermost TRS:
Rules:
lte(
Cons(
xs'),
Cons(
xs)) →
lte(
xs',
xs)
lte(
Cons(
xs),
Nil) →
Falseeven(
Cons(
Nil)) →
Falseeven(
Cons(
Cons(
xs))) →
even(
xs)
notEmpty(
Cons(
xs)) →
TruenotEmpty(
Nil) →
Falselte(
Nil,
y) →
Trueeven(
Nil) →
Truegoal(
x,
y) →
and(
lte(
x,
y),
even(
x))
and(
False,
False) →
Falseand(
True,
False) →
Falseand(
False,
True) →
Falseand(
True,
True) →
TrueTypes:
lte :: Cons:Nil → Cons:Nil → False:True
Cons :: Cons:Nil → Cons:Nil
Nil :: Cons:Nil
False :: False:True
even :: Cons:Nil → False:True
notEmpty :: Cons:Nil → False:True
True :: False:True
goal :: Cons:Nil → Cons:Nil → False:True
and :: False:True → False:True → False:True
hole_False:True1_0 :: False:True
hole_Cons:Nil2_0 :: Cons:Nil
gen_Cons:Nil3_0 :: Nat → Cons:Nil
Lemmas:
lte(gen_Cons:Nil3_0(+(1, n5_0)), gen_Cons:Nil3_0(n5_0)) → False, rt ∈ Ω(1 + n50)
Generator Equations:
gen_Cons:Nil3_0(0) ⇔ Nil
gen_Cons:Nil3_0(+(x, 1)) ⇔ Cons(gen_Cons:Nil3_0(x))
No more defined symbols left to analyse.
(21) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
lte(gen_Cons:Nil3_0(+(1, n5_0)), gen_Cons:Nil3_0(n5_0)) → False, rt ∈ Ω(1 + n50)
(22) BOUNDS(n^1, INF)